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FLOW AND €EAT TRANSFER BETWEEN HEATED IZATES OF FINITE 

IENGTH I N  A FREE-MOLECU FLOW ENVIRONMENT 

by Morris Perlmutter 

Lewis Research Center 

SUMMARY 

Solutions f o r  the mass-flow prof i les ,  density,  s t a t i c  pressure, tempera- 
t u r e ,  and w a l l  shear d i s t r ibu t ions  f o r  a c o l l i s i o n l e s s  gas flowing through a 
f i n i t e  length f l a t - p l a t e  channel a r e  given, and numerical values f o r  par t icu lar  
cases a re  calculated.  The heat t r a n s f e r  between t h e  channel w a l l s  and the  en- 
vironment a r e  calculated f o r  the  r a r e f i e d  gas heat t r a n s f e r  as well  as f o r  ra- 
d ian t  heat t ransfer .  !The r e s u l t s  indicate  t h a t  the  r a r e f i e d  gas heat t r a n s f e r  
can be s igni f icant  compared with the thermal r a d i a t i o n  f o r  conditions similar 
t o  those that  occur i n  a thermionic converter. 

INTRODUCTION 

There i s  a growing i n t e r e s t  i n  r a r e f i e d  gas flow and heat t r a n s f e r  because 
of t h e  low-density environment that  i s  being encountered i n  present-day tech- 
nology. When the mean free path of the molecules i s  s m a l l  compared with the  
model dimensions, the f l u i d  may be t r e a t e d  macroscopically and the  c l a s s i c a l  
Navier-Stokes equations used. When the  mean f r e e  path of t h e  molecule i s  
la rge ,  however, these l imi t ing  equations no longer apply. These cases can be 
t r e a t e d  by using the  k i n e t i c  theory of gases. The l imi t ing  case t rea ted  by 
k i n e t i c  theory, namely, t h a t  of very large mean f r e e  paths,  which i s  cal led 
free-molecule flow, i s  considered herein.  

, 
The problem of free;molecule-flow heat t r a n s f e r  between i n f i n i t e  p la tes  

was t r e a t e d  by Knudsen, as discussed i n  reference 1. 
t r a n s f e r  i n  an adiabat ic  tube and nozzle with free-molecule flow w a s  t r e a t e d  i n  
references 2 and 3. The heat t r a n s f e r  t o  a nonconvex surface from a f ree-  
molecule stream was  treated i n  reference 4. 

The problem of heat 

The model analyzed here cons is t s  of a f l a t - p l a t e -  channel of f i n i t e  length 
and i n f i n i t e  depth with each p l a t e  isothermal a t  a d i f f e r e n t  uniform tempera- 
ture. The accommodation coef f ic ien ts  f o r  both p l a t e s  are assumed uniform and 
equal. There are assumed t o  be no intermolecular c o l l i s i o n s  i n  the  channel. 
The channel connects two gas reservoirs ,  each reservoi r  f ixed a t  a given t e m -  
perature and density. The m a s s  t r a n s f e r  flow r a t e  through t h e  channel formed 
by t h e  p la tes  i s  found by numerically in tegra t ing  t h e  exack i n t e g r a l  equation. 



The longi tudinal  and t ransverse  flow d i s t r ibu t ions  as well  as the  dens i ty  and 
w a l l  shear d i s t r ibu t ions  i n  t h e  channel a r e  given. (From these d i s t r ibu t ions ,  
t he  l o c a l  pressure and temperature can be ca lcu la ted . )  The t o t a l  energy leav- 
ing the  surface i s  calculated,  and the  net  energy t ransfer red  between t h e  sur- 
faces  and t h e  environment i s  found. 
t r a n s f e r  i s  calculated f o r  a similar model, and t h e  heat t ransfer red  by rad ia-  
t i o n  i s  compared with t h a t  f o r  free-molecule flow f o r  a s i t u a t i o n  t h a t  might be 
appl icable  t o  t h e  ana lys i s  of heat t r a n s f e r  i n  thermionic energy converters.  

I n  addi t ion,  t h e  thermal r ad ia t ion  heat 
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SYMBOLS 

cross-sect ional  a reas  of i n l e t  and o u t l e t ,  respec t ive ly  

areas  of lower and upper p l a t e ,  respec t ive ly  

heat capaci ty  at  constant volume 

energy per u n i t  m a s s  of molecular stream, [ev + (R/Z)]T 

energy f l u x  leaving surface 

t o t a l  energy f l u x  (emitted and r e f l e c t e d )  leaving surface A a t  loca- 
t i o n  A1 

shape f a c t o r  

mass-flow r a t i o ,  (m - mR)/(mL - mR) 

number of molecules per un i t  volume having ve loc i ty  V per un i t  ve- 
l o c i t y  i n t e r v a l  

kernel ,  ( see  eq. (3 ) )  

mean f r e e  path 

length of p l a t e s  divided by dis tance between them 

m a s s  of molecule 

molecular weight 0 

mass-flow rate per un i t  area ( m a s s  f l u x )  

m a s s  f l u x  en ter ing  the  channel from l e f t  reservoi r ,  pL/2&12pL 

average m a s s  f l u x  through channel f r o m  l e f t  t o  r i g h t  reservoi r  

s t a t i c  pressure 

t o t a l  r a t e  of heat  loss from surface 
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gas constant, 

distance shown i n  f i g .  1 (p. 5)  

distance shown i n  f i g .  1 (p. 5)  

temperature 

s t a t i c  temperature 

average nontranslat ional  i n t e r n a l  energy of t h e  molecule 

mean veloci ty  

component of mean ve loc i ty  i n  xl- and x2-directions,  respect ively 

velo c it y of molecule 

undirected component of veloci ty  

space coordinates divided by distance between p la tes  (see f i g .  l ( a ) ,  
P- 5) 

a posi t ion locat ion 

accommodation coeff ic ient  (emissivi ty)  

1/ ( 2RT) 'I2 
angle shown i n  f i g .  1 (p. 5) measured clockwise from normal t o  

surf ace 

angles beginning of p la te  and t o  end of p l a t e ,  respect ively (see 
f i g .  l ( a ) ,  p. 5)  

coordinates on lower p l a t e  divided by distance between p la tes  i n  
xl- and x3-directions, respect ively 

coordinates on upper p la te  divided by distance between p la tes  i n  
xl- and x3-directions, respect ively 

density 

densi ty  a t  standard conditions ( 2 7 3 O  K and 1 a t m )  

Stefan-Boltzmann constant, 1 . 3 6 ~ 1 0 - l ~  ca l / (  see)  ( em2) (OK4) 

molecular diameter 

shear s t r e s s  
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subsolutions as given by eqs. 

If angle from normal t o  element 

Subscripts : 

A-B from point  A 

a contr ibut ion 

b contr ibut ion 

t o  point B 

from environment 

from environment 

(30) t o  (34) 

above x2 

below x2 

C convected heat t r a n s f e r  

i isothermal case, walls and reservoi rs  a t  same temperature 

i n  incident 

L l e f t  environment 

2 t o  r i g h t  end of channel 

0 t o  l e f t  end of channel 

R r i g h t  environment 

r radiated heat t r a n s f e r  

t t o t a l  leaving surface including r e f l e c t e d  and emitted streams 

W on w a l l  surface 

8 i n  d i rec t ion  8 

A lower w a l l  

IJ. upper wall 

Superscript s : 

( 7 mean, ( )fv d V  
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ANALYSIS 

The model analyzed cons is t s  of two p a r a l l e l  p l a t e s  whose length divided by 
t h e  distance between them i s  2 .  The p l a t e s  are of i n f i n i t e  depth and a re  a t  
temperatures T,, and T respect ively.  The l e f t  and r i g h t  environments a re  
at  temperatures TL and TR and dens i t i e s  pL and pR, respect ively,  as 
shown i n  f igure  l ( a ) .  The gas i s  i n  equilibrium i n  the  l e f t  and r i g h t  r e se r -  

P’ 

(a) Space element. 

I, 

(b) Wall element. 

Figure 1. -Analytical model. 

vo i r s .  The density of the  gas is  assumed t o  be s u f f i c i e n t l y  low everywhere so 
tha t  the mean f r e e  path of t he  molecules i s  large with respect  t o  the distance 
between the  p l a t e s .  I n  t h i s  model, therefore ,  t he  e f f e c t  of intermolecular 
co l l i s ions  i n  the  channel is  s m a l l  and may be neglected. 

Mass Flux Leaving Walls 

The t o t a l  m a s s  f l u x  leaving the  lower p l a t e  a t  a point having an xl- 
coordinate equal t o  A, i s  denoted by m,, . T h i s  i s  equal t o  the  mass f l u x  

incident  a t  tha t  point .  
r ived  i n  the  appendix (eq. ( A 5 ) )  i s  given by 

1 
The f l u x  incident (and leaving)  t h e  lower w a l l  as de- 

me d ( s i n  0) (1) 

where me 
a t  angle 0 with respect  t o  t h e  normal from the  point  A1 on t h e  lower p la t e  
as shown i n  f igure  l ( b ) .  

i s  the  m a s s  f l u x  emitted f r o m  t h e  surface element t h a t  i s  or iented 

For t h e  present case, th is  becomes 

- d ( s i n - 0 )  + d ( s i n  e) ( 2 )  d ( s i n  0) + 2 

where mL and mR a re  the  m a s s  f luxes  en ter ing  t h e  channel from the l e f t  and 
r i g h t  environments. If me and mL a r e  equal t o  mR, t hen  equation ( 2 )  shows 
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t h a t  mA equals mR. Hence, equation ( 2 )  may be wr i t ten  as 
1 

/"" f 0  d(sin 2 

= -I,,, 00 

mAl - mR d ( s i n  0 )  + 

2 f =  
'1 mL - mR 

or 

0 .1 

I l l  
. Length of plates 
divided by distance 

between them. 

.2 . 3  .4 .5  
All1 

Figure 2. - Mass-flow ratio from surface. 

TABLE I. - VALUES OF MASS-FLOW RATIO 

AT E N N C E  OF CHANNEL 

Length of p l a t e s  
divided by distance 

between them, 
2 

0.1 
.5 
1 
2 
5 

10 
20 

m 

Mass-flow r a t i c  
a t  entrance 
of  channel, 

f 0  

0.5249 
.6132 
.6083 
.7701 
.a627 

.9141 

.9485 
1.0 

and K ( A p P $ I q  a r e  % where F 

given i n  the  appendix by equations (A7) 
and (A8). 
(3b) was obtained by numerical in tegra-  
t i o n  and i t e r a t i o n .  The r e s u l t s  a r e  
shown i n  f igure  2 for various values 
of 2 ,  and t a b l e  I gives numerical 
values of f f o r  A1 = 0. Fromthe 
symmetry of t h e  problem, f along the  

upper p l a t e  has the  same func t iona l  de- 
pendence on p1 as 

The solut ion t o  equation 

p1 

has on A1 
f A l  I 

f A l  
o r  f = . The funct ion 

s a t i s f i e s  t h e  r e l a t i o n  of fA + f = 1, 

where fi, = 2 - A1. This r e l a t i o n  i s  
discussed i n  reference 2 and agrees 

fil 

with the  numerical r e s u l t s  reported herein.  

Average Longitudinal Mass Flux 

The average m a s s  f lux through t h e  channel 
can be found from 

6 



0 ;  The first term on t h e  r i g h t  i s  the  m a s s  f l u x  enter ing the channel a t  
t h e  second term i s  t h e  m a s s  f l u x  leaving through the  entrance (xl = 0)  t h a t  
comes from both the  upper and lower w a l l s .  
second term takes account of the f a c t  t h a t ,  by symmetry, the m a s s  f l u x  leaving 
the  upper wall that  goes through t h e  i n l e t  i s  equal t o  the amount leaving the  
lower w a l l .  The remaining terms give the  m a s s  f l u x  leaving the  inlet  t h a t  en- 
t e r s  the  righ;t end and has no c o l l i s i o n  with the  w a l l .  Since it can be shown 
t h a t  

x1 = 

The fac tor  2 t h a t  appears i n  the 

2 2 

FdA~l-L dhl =Jd FdA~l-R dAl 

equation ( 4 )  can be rewri t ten as 

The average m a s s  f l u x  through t h e  channel i s  shown i n  f igure  3. It can be seen 
that  

0 

. 

I I I I I I I I ~  0 Clausinq's solution 

_ _ _ _  

12 14 16 18 20 
Length of plates divided by distance between them, I 

Figure 3. -Average mass flux through channel. 

t h e  average m a s s  f l u x  decreases f o r  increasing lengths. A l s o  shown i n  f igure  3 
i s  the approximate solut ion of Clausing ( r e f .  5 ) ,  which w a s  obtained by assum- 
ing a l i n e a r  form of f with an added correct ion fac tor .  It can be seen 

t h a t  Clausing's approximate solut ion i s  i n  good agreement with the  exact solu- 
t i o n  obtained by use of equation (5) .  

A 1  

Density Distr ibut ion i n  Channel 

A s  shown i n  the  appendix, the  densi ty  a t  a point (x1,x2) i s  given by 
e quat ion ( A l l )  

7 



where the  angle 8 is  again measured clockwise with respect  t o  the  normal t o  
the  upper p l a t e  passing through t h e  point (x1,x2). 

The t o t a l  contr ibut ion t o  p a t  (x1,x2) from t h a t  p a r t  of t he  environment 
above x2 i s  

The f i rs t  two terms a r e  t h e  contributions' t o  t h e  dens i t i e s  from the  r i g h t  and 
l e f t  reservoi rs ,  and t h e  remainder i s  t h e  contr ibut ion from t h e  upper w a l l .  If 
pLmL = pRmR = P p e ,  t h i s  equation reduces t o  the  r e l a t i o n  

pa = pPR2fl1/'/2 = pR/2. 
vo i rs  a r e  a l l  at t h e  same temperature, equation ( 7 )  may be wr i t ten  as 

For t h e  isothermal case, where the  w a l l s  and r e se r -  

since 
case. 

pL = pR = p,. This can be r ead i ly  generalized t o  t h e  nonisothermal 

By symmetry t h e  contr ibut ion from t h e  environment below x2 i s  given by 
n 

the  same r e l a t i o n  except t h a t  x2 i s  replaced by 1 - x2 E x2; t h a t  i s ,  

so t h a t  t he  t o t a l  densi ty  i s  

If the  reservoi rs  were reversed, then, i n  general ,  t he  densi ty  at  t h e  
point (Gl,x2) under reversed conditions would be equal t o  t h e  densi ty  a t  
(x1,x2) before r eve r sa l  or 

8 



P ( 2 1 , X 2 )  - PL [ 'R - 'L 

which can be rewr i t ten  as follows: 

Thus the  densi ty  values i n  the  e x i t  half of the channel may be found from t h e  
densi ty  values i n  t h e  entrance half .  

A reasonable approximation f o r  f ,  as can be seen from f igure  2 (p. 6 ) ,  i s  
a l i n e a r  function of the  xl-coordinate, i n  p a r t i c u l a r ,  

1 - 2f0  1 - 2f0 1 - 2f0  ~ 

x2 t a n  8 (10) 2 x1 + 2 f@ = fo  + 2 P-1 = f o  + 

Subst i tut ing equation (10) i n t o  equation (sa) and employing equations (8b) and 
( 8 c )  give the following approximate r e s u l t  f o r  the  density:  

These r e s u l t s  a r e  p lo t ted  i n  f igure  4 for .va lues  of x1 from 0 t o  2/2. (The 
remaining values can be found from eq. ( 9 ) . )  The values of fo  a r e  given i n  
t a b l e  I (p. 6 ) .  

Local Longitudinal Mass Flux 

As shown i n  t h e  appendix (eq. (A13)), the  l o c a l  m a s s  f l u x  through t h e  
channel a t  point (x1,x2) i s  given by 

9 



I I  
Length of plates 

divided by distance' 
between them, . 

1 

.5 

. 4  

. 3  

X2 

.2 

. 1  

0 
.50 .55 .60 . 

/E!LpL\ 

1 
.1 
.5 

i .70 

\pL - PR)i 

(a) Length of plates divided by distance be- 
tween them, l, 0.5, and 0. l. 

Length of $ate; 
divided by distancf 

between them, 
Z 

1.0 

( 
(b) Length of plates divided by distance be- 

tween them, 2, 5, and 10. 

Figure 4. - Isothermal density distribution. 

% s i n  0 de 
2 

The contr ibut ion t o  pul a t  (x1,x2) a r i s i n g  f r o m  t h e  environment above xz i s  

If mL = mR = me, then (pul), = o and equation (13) can be s implif ied t o  

The contr ibut ion t o  pul a t  (xl,x2) a r i s i n g  f r o m  the  environment below 
x2 i s  given by equation (14) evaluated a t  $2 instead of xz, t h a t  i s ,  
( ~ U ~ ) ~ ( X ~ , X ~ )  = ( p ~ ~ ) ~ ( x 1 , x 2 ) 1  x2=;;2, and the  t o t a l  longi tudinal  mass f l o w  i s  

given by pul = ( P U ~ ) ~  + (pul)b. Assuming the  l i n e a r  form of f given by 
equation (10) and in t eg ra t ing  give 
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1 - 2f0 

22 
+ 1 x2 + x2 + 

(x$ + xy2 (x$ + s i y  

These r e s u l t s  a r e  p lo t ted  i n  f igure  5. 

L e n 6 h  o i  plaies dhided b) 
I 1  distance between them, 

.7 

Figure 5. - Axial mass-flow profile. 

.9 1.0 

Note from equation 
(15a) t h a t  the  curves are 
symmetric about x1 = 2/2; 
t ha t  is, 

This can be seen from the 
f a c t  t ha t  the problem i s  
symmetrical, so tha t ,  if  the  
e x i t  and entrance reservoirs  
a r e  reversed, the  r e s u l t  i s  

which i s  equal t o  equation (15b). 
the  channel i s  approached. The curves are symmetric around x1 = 2/2 and 

The curves become l e s s  f l a t  as the  center of 

x2 = 0.5 .  

Local m a s s  f l u x  i n  transverse or x2-direction. - As shown i n  t h e  appendix 
(A16)), the  f l u x  i n  t h e  transverse d i rec t ion  i s  (eq. 

11 



pu = -12fi 3 2 cos 0 d0 

The contribution from t h e  environment above x2 i s  given by 

If me = mL = mR, then ( p u ~ ) ~  = -mR and equation (17)  reduces t o  

The contribution t o  the  transverse flow from t h e  lower w a l l  i s  by symmetry the 
same as f r o m t h e  upper wall with x2 replaced by 1 - x2 and with the  s ign 
changed : 

Assuming t h e  l i n e a r  form f o r  f (eq. (10) )  and in tegra t ing  give 

Notice t h a t  (puz) = -(pu2)^ and a l s o  t h a t  (puz) = -(pu2)^ . Some of 

these r e s u l t s  a r e  shown i n  f igure  6. 
x2 x2 X 1  X 1  

Shear s t r e s s  along wall.- The shear s t r e s s  on the  lower w a l l  i n  the  xl- 
d i rec t ion  i s  given by T = - ( p V i V i ) w ,  where V i  i s  the  l o c a l  undirected 

component of molecule speed i n  the  xl-direction ( i . e . ,  V i  = V1 - ul, where 
J ”  V;fv dV = 0)  and V i  i s  t h e  l o c a l  undirected component of molecule speed 

i n  t h e  x2-direction ( i . e . ,  V l  = V2 - u2, where V L f v  dV = 0 ) .  

x1 7 x2 
Since the  u2 ve loc i ty  i s  zero a t  t h e  w a l l ,  the  w a l l  shear s t r e s s  T 

1 2  



.5 

.4 

.3 
x2 

.2 

. I  

( 

\ 
X 1  
Z 

-2 
/ 

\ 

\ 

/ 

. 

.12 .16 

. 
1 
!! t 

.20 .24 

(a) Length of plates divided by distance between them, 
0.1. 

4 
i o  

B .12 

(b) Length of plates divided 
by distance between 
them, 2. 

Figure 6. - Radial mass-flow profile. 

can be wri t ten -(pV1V2),. Then by equation (A191 ,, 

The contribution t o  the  shear s t r e s s  due t o  t h e  molecules leaving the  w a l l  i s  
zero since they a re  r e f l e c t e d  diffusely.  For the  isothermal case, t h i s  becomes 

cos 0 s i n  0 d0 + f 0  cos 0 s i n  0 d0 ( 2 1 )  
w , i  

which can be integrated t o  give 

The r e s u l t s  a r e  shown i n  f igure  7. 
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Length of plates divided by 
distance between them, 

1.0 

. 8  

.6  

.4 

.2 
0 . 1  .2 . 3  

X l l Z  

Figure 7. - W a l l  shear distr ibu 

Local temperature and pressure i n  chan- 
nel.  - The k i n e t i c  energy of t h e  gas a t  a 
p a r t i c u l a r  locat ion due t o  an element 
- 

I 1 dpl dp3 i s  given by 
+l 

ti . .  

Following the  same procedure used before 
r e s u l t s  i n  

.5 

t ion. 

The average k i n e t i c  energy of the gas can be expressed i n  terms of the  l o c a l  
s t a t i c  temperature by wri t ing 

where the  k i n e t i c  theory d e f i n i t i o n  has been used f o r  the  l o c a l  s t a t i c  temper- 
a ture  Ts. 

For t h e  isothermal case, where walls and reservoi rs  a r e  a t  temperature T, 
equation ( 6 )  becomes 

Subst i tut ing t h i s  i n t o  equations ( 2 3 )  and ( 2 4 )  y ie lds  

or 
2 

T s = T - -  3R 
U 

For a simple gas, 3R/2 = cv and equation ( 2 5 )  becomes 
2 U T = T s + -  

2cv 

The s t a t i c  pressure can r e a d i l y  be obtained from t h e  s t a t i c  temperature by the  
i d e a l  gas l a w  ps = pRTs. 

1 4  
, -  



Total  energy leaving surface element. - The t o t a l  energy per u n i t  a rea  
leaving surface A at  point A, i s  derived i n  the  same manner as equa- 

t i o n  (27 )  i n  reference 2. The accomodation coef f ic ien t  i s  defined as 

e A l , t  - ( e A l , t ) i n  
a =  

i s  t h e  t o t a l  energy incident  on t h e  surface per un i t  area and 
where (eAJin 

i s  the  energy f l u x  t h a t  would be car r ied  away from t h e  surface i f  a l l  
mAl% 
t he  incident  molecules achieved thermal equilibrium with t h e  w a l l .  The energy 
per un i t  m a s s  of t h e  stream leaving surface A that  i s  i n  equilibrium with t h e  
w a l l  i s  shown i n  equation (A22)  t o  be 

where 
vo i r ,  i s  equal t o  [ev + (R/Z)]TL, and 
reservoi r .  
c ien t  a i s  equal f o r  both isothermal walls and a l l  t he  molecules a r e  leaving 
t h e  w a l l  d i f fuse ly .  

EL, t h e  energy per un i t  m a s s  of t he  stream enter ing from the  l e f t  r e se r -  

% i s  defined s imi l a r ly  f o r  t h e  right 
In  equation (27b),  it i s  assumed tha t  t h e  accommodation coef f i -  

When mEAy mLEL, and e a re  equal t o  eR = m#R, equation (27b) shows 
h,t 

t h a t  e,, = eR. Hence equation (27b) can be wr i t ten  
l,t 

e - eR = a ( m h l E ~  - eR) A l , t  

Similarly,  f o r  t h e  upper w a l l ,  

15 



e - eR = a(mPIEP - eR) IJ.1, t 

Because of t h e  l i n e a r i t y  of t h e  problem, t h e  pr inc ip le  of superposit ion 
can be used t o  reduce t h e  problem in to  simpler p a r t s  t h a t  can be added together  
f o r  various boundary conditions as follows: 

where 

and 

Then 
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and 

and ( 3 4 4  

A s  shown, t h e  funct ional  dependence of the cp functions on pl i s  the same as 
the  dependence on A,. 

These subsolutions possess physical significance.  If TP and TL a r e  
equal t o  
dens i t ies  as well as the temperatures of t h e  l e f t  and r i g h t  environments a r e  
equal,  then t h e  t o t a l  energy leaving the  lower surface i s  

+ cpl-lB(mREI - eR) and t h e  energy leaving the  upper surface i s  

+ cpl-2B(mR~I - e R ) .  The curves f o r  cpl-lB and cp1-2B a r e  given i n  f igure  8 
f o r  various values of 2 .  It can readi ly  be seen tha t  the  l imi t ing  cases f o r  
2 = o a r e  (cpl-lB)2+o = a and (cp1-2B)2,0 = 0, those f o r  2 = a r e  

( q l - l B ) ~ -  - 2 - a. 
x/2 = 0.5. 
while i n  the  l imi t ing  case of 
cp1-2B = O -  

TRY while t h e  lower surface i s  a t  TI, and i f  mL = mR, tha t  i s ,  t h e  

= eR 
e h l  , t 

P 1 , t  = eR e 

1 - a  The r e s u l t s  a r e  symmetrical around 

cpl-lB = cplmZB = 0, 

1 
and ('Pl-ZB) 2- = K- - -  

In  the  l i m i t  as a + 0, t h e  solut ion reduces t o  
a = 1, the  solut ion reduces t o  cpl-lB = 1 and 

Similarly,  i f  TA = TP = TR, mL = mRy and TL f TR, the  energy leaving 
= eR + cpl-L(eL - eR) .  These r e s u l t s  a r e  

1 - a  
e h l  , t e i t h e r  surface i s  given by 

given i n  f igure  9. The l imi t ing  solut ion f o r  2 = 0 i s  ( ~ p ~ - ~ ) ~ ~  = 7 2 ,  f o r  
~ A? i s  (cpl-L)2-m = 0, f o r  a = 1 i s  cpl-L = 0, and for  a = 0 i s  the same 

17 
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Length of p iads  d/vidkd by E'".  distance between them, 
distance between them, 

0 . I  .2 . 3  . 4  .5 .6 .7 . 8  .9 1.0 
x / I  

(a) Accommodation coefficient, a = 0.5. (b) Accommodation coefficient, a = 0.9. 

Figure 8. - Subsolutions 'PI-1~ [m"::;: ';I] 1-1B and "1-2B z 
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(a) Accommodation coefficient, a = 0.5. (b) Accommodation coefficient, a = 0.9. 
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as equation (3) and i s  given i n  f igure  2 (p.  6 ) .  

Final ly ,  if  TA = Tp = TR and eL = eR but mL mR, then the  t o t a l  en- 
= eR + (mL - "R)%('Pl-JA + 'P1-2A) * e A l  , t ergy leaving e i t h e r  surface i s  given by 

The r e s u l t s  f o r  'pl-u and cp1-2A a re  shown i n  f igu re  10. For 2 = 0, the  

so lu t ion  reduces t o  'pl-% = and cp1-2A = 0. a 

. 6  .7 .8 .9 1.0 
X l l  

(a) Accommodation coefficient, a = 0.5. (b) Accommodation coefficient, a = 0.9. 

ex2, t - 
and w1-2A E[ e R ]  

El(mL - mR) 1-2A 
Figure 10. - Subsolutions I 

N e t  Energy Leaving Surface 

The average net rate a t  which energy leaves surface A per u n i t  area of 
surface i s  the  difference between the  r a t e s  of emitted and absorbed energy; 
tha t  i s  , 

Sub s t it u t  ing 

i n t o  equation ( 3 5 )  results i n  
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= 1 - f A  equation ( 3 7 )  becomes 1 2 

f A l  A 1  
Since sd fAl dAl = 2 because 

where the  bar  denotes t h e  integrated average value.  Similarly,  t h e  average net 
heat f l u  leaving wall 1-1 i s  

- m (a) Accommodation coefficient, a = 0.5. 

0 2 4 5 8  

t 
1 10 

I 
E 14 

18 20 
Length of plates divided by distance between them, 1 

(b) Accommodation coefficient, a = 0.9. 

f igure 11. - Integrated mean values of subsolution z 

or  

The integrated values 

evaluate (eAlyt - e R ) 
and (epl,, - eR), which occur 

i n  equations (38) and (40), may 
be evaluated from equations 
(30) and (31) by using t h e  in-  
tegra ted  values 

f igu re  11. 

Net Energy From Environment 

The net energy flux enter ing the  channel through the  l e f t  end i s  equal  t o  

20 



which can be wr i t ten  as 

r 2  

- 
OF 

1.2 

1.0 

.8 

.6 

.4  

.2 

0 

I, 
2 

(a) Accommodation coefficient, a = 0.5, 

18 20 
Length of plates divided by distance between them, I 

(bl Accommodation coefficient, a = 0.9. 

Figure 12. - Integrated values 3 = 

which i s  equal t o  

r, 1 

Figure 1 2  shows the in te -  
grated r e s u l t s  for cplLF, C ~ ~ - ~ F . ,  

%-2AF, %-2B F, and cpl-lBFJ where 

(PF =12 cpF dAl. Using these 

terms w i t h  equations (30) and (31) 
gives & L / A ~ .  BY conservation of 
energy, the  net  energy flux from 
t h e  r i g h t  s ide i s  

QR - - - QL - 2(% Q A Q  + e) (44) q- AL 
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RADIATION HEAT TRANSFER 

I n  most cases where t h e  free-molecule flow i s  important, the  thermal rad i -  
a t i o n  w i l l  a l s o  be important. The r a d i a t i o n  problem involves equations similar 
t o  those f o r  the  free-molecule flow. The model here i s  s imilar  t o  the  one 
t r e a t e d  i n  reference 6,  although t h e  analysis  of reference 6 did not include 
the  e f f e c t s  of t h e  r i g h t  and l e f t  environments. 

From an energy balance, the t o t a l  energy leaving point A, by rad ia t ion  
f o r  the  present model i s  

In  t h i s  case, e i s  t h e  t o t a l  energy leaving point A, by rad ia t ion ,  and 

eL and eR f o r  t h i s  case a r e  equal to ‘ST: and oTR, respectively.  The 
emissivity of the surfaces i s  given by a. Equation (45)  can a l s o  be wri t ten 
as 

A l , t  4 

A similar equation would apply f o r  surface p 

Since t h i s  equation i s  l i n e a r ,  it can be reduced t o  simpler p a r t s  by super- 
po s it ion 

and 

where the  cp’s a r e  the same r e l a t i o n s  given i n  equations (32) and (34) .  
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The net heat rad ia ted  from wall A can  1:e calculated s imi la r ly  t o  the  
free-molecule case t o  be 

which becomes 

The term e - eR i s  obtained by finding the  in tegra ted  average value of 

equation (48) by means of f igu re  11. 
h l , t  

Similarly,  f o r  t h e  upper surface p, 

The energy enter ing from the  l e f t  end i s  a l so  obtained as before: 

which can be wr i t ten  as 

Equation (44)  can be used t o  f i n d  QR. 

EXAMPLE 

For purposes of i l l u s t r a t i o n  and t o  indicate  the  magnitude of the  f r ee -  
molecule heat t r a n s f e r ,  a sample ca lcu la t ion  i s  car r ied  out.  Consider t he  case 
where the l e f t  and r i g h t  environments and one w a l l  are at  equal temperatures 
and t h e  dens i t i e s  of  t he  l e f t  and r i g h t  environments a r e  equal while the  other  
w a l l  i s  a t  temperature 5\. This type of s i t u a t i o n  is  similar t o  one t h a t  may 
a r i s e  i n  a thermionic energy converter. For t h i s  case,  t h e  free-molecule heat 
t r a n s f e r  from equations (30) and (38) i s  

= 
(54) 
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Similarly,  f o r  radiat\ ion from equations (48) and (50) 

Dividing equation (54) by equation (55) y ie lds  

The gas i s  assumed t o  be argon a t  a densi ty  of ps, where ps i s  t h e  den- 
s i t y  a t  standard conditions (273O K and 1 a t m )  and the  p la tes  a r e  assumed t o  be 
tungsten with p l a t e  1 a t  2000° K and p l a t e  2 at  500° K. The w a l l  emissivi ty  i s  
taken equal t o  0.3. Hence, the  rad ia t ion  f a c t o r  on t h e  r i g h t  s ide of equa- 
t i o n  (56) i s  

( s q  
I,-J($:T:J = 0*'07 c a l  

r 

In  the  evaluation of t h e  convection f a c t o r  of t h i s  equation, the  accommodation 
coeff ic ient  f o r  the  argon-tungsten combination i s  given i n  reference 7 as 0.85. 
Also, 

Since cv = (3/2)R f o r  argon, equation ( 2 2 )  i s  

- ER = 2R(T7, - TR) = 1 

Combining these r e s u l t s  gives 

g 
( s q  em) ( see)  

used t o  obtain 

9 cal/g 

62, c 

Qbr 
- = 0.21 

which indicates  t h a t  t h e  free-molecule-flow heat t r a n s f e r  i s  not negl igible  f o r  
conditions t h a t  might occur i n  a thermionic device. This r a t i o ,  however, w i l l  
depend strongly on t h e  conditions chosen. 
those chosen here t h e  rad ia t ion  heat t r a n s f e r  w i l l  increase because the  radia-  
t i o n  depends on t h e  temperature t o  the four th  power. 
the  free-molecule heat t r a n s f e r  w i l l  increase since it i s  d i r e c t l y  proportional 
t o  t h e  density.  
longer applicable because the  mean free path w i l l  be s m a l l  compared with t h e  
channel'width, and t h e  e f f e c t  of intermolecular co l l i s ions  cannot be neglected. 

For higher w a l l  temperatures than 

For higher dens i t ies ,  

A t  high dens i t ies ,  however, t h e  present solutions are no 

The dimension of the  channel f o r  free-molecule flow t o  occur can be found 
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if the  mean f r e e  path of t h e  gas molecule i s  known. For hard sphere molecules, 
the  mean f r e e  path & i s  given by 

1 

where am i s  the  molecular diameter. Table 1 . 6  of reference 7 gives f o r  argon 

For of lo4, L, = 0.062 centimeter, which i s  large compared with the  dis- 
tances between the p l a t e s  commonly used i n  thermionic energy converters. 
Therefore, the  assumption of t h i s  report  t h a t  the  e f f e c t s  of moleculax c o l l i -  
sions a r e  negl igible  i n  thermionic converters appears reasonable. 

ps/p 

CONCLUDING RENAFXS 

The present r e s u l t s  give solutions f o r  t h e  density,  m a s s  flow, w a l l  shear, 
s t a t i c  temperature, and pressure d is t r ibu t ions  i n  a f l a t - p l a t e  channel w i t h  
free-molecule flow. Calculations a r e  carr ied out t o  indicate  values of these 
flow charac te r i s t ics  f o r  d i f fe ren t  conditions. Also found i s  the  heat t r a n s f e r  
between the surfaces and the  environment by free-molecule flow and by thermal 
rad ia t ion  f o r  a r b i t r a r y  combinations of temperatures. 
rad ia t ion  heat t r a n s f e r  w i t h  the  free-molecule heat t r a n s f e r  i n  a sample case 
tha t  i s  s i m i l a r  t o  that  ex is t ing  i n  a thermionic converter shows that f ree-  
molecule heat t r a n s f e r  can be s igni f icant  when compared with rad ia t ive  heat 
t r a n s f e r  . 

A comparison of the  

! 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, August 24, 1964 
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APPENDIX - MA.SS FLUX TRANSFER BETWEEN SURFACE ELEMENTS 

The m a s s  f l u x  through an elemental area $J&T a t  some point x', which i s  
assumed t o  have a gas i n  a Maxwellian d i s t r i b u t i o n  behind it i s  given by 
m e  m a s s  flow from % I  t h a t  i s  incident on an elemental area % due t o  
molecules i n  t h e  speed range V t o  V + dV can be obtained from reference 1 
i n  the  following way (see f i g .  1, p. 5 ) :  

%IP$IV~ exp(-pElV2)dV cos $x~ $ 1  

2 cos Ifx % (AI) - - aAx dm%l-%,dV s3-l 

which can be rewr i t ten  as 

The term dF i s  t h e  same as the  shape f a c t o r s  used i n  thermal radia-  

t i o n .  After equation (A2) i s  integrated over V from 0 t o  m, it becomes 

or f dm dAx1-dPL, = mx' %Ax-%, 

(A3 1 

where use w a s  made of the  following rec iproca l  r e l a t i o n  of ten  used i n  radia-  
t i o n :  

cos $ f x l  cos qx &Ax' dAx 

2 *a4(1-dAx % 1 =  *dAya4(l dAX = 
TtS 

Since m i s  independent of p3, t h e  integrat ion over p3 can be car r ied  out 

and the shape f a c t o r  evaluated f o r  an i n f i n i t e  s t r i p  of width 
upper wall a t  point 

p1 
dpl on the  

p1 t o  an elemental a rea  i n  the  lower channel wall a,., . 
r cos e rz de dp3 

and cos $f dpl dp3 = Figure 1 (p. 5 )  shows t h a t  > 

2 2 where s2 = r + p3. This gives 
cos % =  S p1 

This r e s u l t  is  similar t o  t h a t  found i n  reference 8. 
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The t o t a l  m a s s  f l u x  incident on and therefore  re f lec ted  from an elemental 

where me 
angle B with respect t o  t h e  normal t o  t h e  point A1 on the  lower p l a t e  as 
shown i n  f igure  l ( b ) .  For p1 < 0, m = mL, w h i l e ,  f o r  p1 > 2 ,  m = mR. 
Since 

i s  the m a s s  f l u x  emitted from a surface element t h a t  i s  oriented a t  

p1 CJ-1 

p1 - A 1  
112 s i n  0 = 

[(Pl - + 11 
then 

The exchange fac tor  from t h e  l e f t  reservoir  t o  i s  given by 

since i n  t h i s  case m = m-,, a constant. 
CJ-1 

Local Density Distr ibut ion 

dv/M molecules per uni t  volume i n  f r o n t  of an ele- 
dP% 1 9 

If there  are 

mental area % at  some point x that  or iginate  a t  an elemental area 
a t  some point x' having speeds i n  the  range V t o  V + dV, the  f l u x  through 
d ~ ,  a t  ve loc i ty  v i s  as follows (see f i g .  1, p. 5 ) :  

Se t t ing  equation ( A l )  equal t o  (A9) gives 

If t h e  previous expression i s  integrated over both V and the  depth, t h e  den- 
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s i t y  at  point x i n  t h e  channel may be expressed as 

( A l l a  ) 

Notice t h a t  t h e  l i m i t s  on the  i n t e g r a l  now extend over a l l  angles, inasmuch as 
a point within t h e  channel (and not on a wall) receives  molecules from the  two 
reservoi rs  and t h e  two w a l l s ,  and these p a r t i c l e s  a l l  contribute t o  p .  Since 
8 = tan-l[(pl - xl)/G2] f o r  t h e  upper wall, 

h 

( Allb ) 

A similar r e s u l t  holds t r u e  f o r  t h e  lower w a l l .  

Local Longitudinal Flux 

As i n  reference 1, t h e  l o c a l  m a s s  flux through t h e  channel i s  obtained by 
by the  component of molecular 

d P d ~ l d ~ 3  , d ~  
multiplying t h e  densi ty  component 

ve loc i ty  i n  t h e  xl-direction t o  give 

Treating t h i s  expression as equation ( A l l a )  was t r e a t e d  i n  the  previous sect ion 
r e s u l t s  i n  

Since cos e = + 25]1/2, then, f o r  the  upper w a l l ,  
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Local Transverse Flux 

The flux i n  the  xz or transverse d i rec t ion  i s  obtained by multiplying 
t h e  densi ty  component by the  component of molecular ve loc i ty  i n  the  
direct ion.  For the present model 

x2- 

which y ie lds  

Since s i n  e = p1 - xl/[(pl - xl) + 2g]'", then, for t h e  upper w a l l ,  

having speeds 
t h e  elemental 

Shear s t r e s s  i n  xl-direction along w a l l .  - The shear s t r e s s  i n  the x-,- 
di rec t ion  on the  surface A due t o  the  molecules 
V t o  V $ dV coming from the  d i rec t ion  8 from 
i s  

T h i s  can be integrated t o  obtain 

Energy t r a n s f e r  between w a l l  elements. - The energy of each molecule i n  
the  stream from t o  && (assuming a Maxwellian d i s t r i b u t i o n  behind % T  
corresponding t o  a temperature equal t o  TX1 = 1/2RP:1, can be wr i t ten  as equal 
t o  ( l / 2 ) M V 2  +MUx I where MUx I i s  the  average nontranslational i n t e r n a l  energy 
of t h e  molecule a t  temperature 
with equation (A2) r e s u l t s  i n  

T,I. Combining t h e  energy of each molecule 
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Since Ux' = [cv - (3/2)R]Txr, equation (AZO) becomes 

(A211 

where 
s a t i s f i e s  t h e  r e l a t i o n  

E,!, t h e  t o t a l  energy per un i t  m a s s  of t he  molecular stream at x', 

E,! = (cv + $)Txt ( A m  
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